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ABSTRACT

Aim Long-term monitoring of biodiversity is necessary to identify population

declines and to develop conservation management. Because long-term monitor-

ing is labour-intensive, resources to implement robust monitoring programmes

are lacking in many countries. The increasing availability of citizen science data

in online public databases can potentially fill gaps in structured monitoring

programmes, but only if trends estimated from unstructured citizen science

data match those estimated from structured monitoring programmes. We

therefore aimed to assess the correlation between trends estimated from struc-

tured and unstructured data.

Location Denmark.

Methods We compared population trends for 103 bird species estimated over

28 years from a structured monitoring programme and from unstructured citi-

zen science data to assess whether trends estimated from the two data sources

were correlated.

Results Trends estimated from the two data sources were generally positively

correlated, but less than half the population declines identified from the struc-

tured monitoring data were recovered from the unstructured citizen science

data. The mismatch persisted when we reduced the structured monitoring data

from count data to occurrence data to mimic the information content of

unstructured citizen science data and when we filtered the unstructured data to

reduce the number of incomplete lists reported. Mismatching trends were espe-

cially prevalent for the most common species. Worryingly, more than half the

species showing significant declines in the structured monitoring showed signif-

icant positive trends in the citizen science data.

Main conclusions We caution that unstructured citizen science databases can-

not replace structured monitoring data because the former are less sensitive to

population changes. Thus, unstructured data may not fulfil one of the most

critical functions of structured monitoring programmes, namely to act as an

early warning system that detects population declines.

Keywords

citizen science, common bird monitoring, JAGS, occupancy model, population

trend, volunteer.

INTRODUCTION

Monitoring changes in species’ populations is an essential

element of biodiversity conservation. Objective quantification

of population change allows problems to be identified and

conservation responses to be developed. The performance of

subsequent management can then be evaluated from contin-

ued monitoring. Dedicated population monitoring schemes

for biodiversity have been running for decades in many

countries, particularly in Europe and North America
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(Greenwood, 2003; Schmeller et al., 2012). However, these

structured schemes require considerable investment and

organization, and usually rely on a large number of dedi-

cated volunteers who are able and willing to apply standard-

ized methods over large areas and long time periods

(Schmeller et al., 2009). Many biodiversity-rich countries,

however, lack the resources for such schemes, necessitating

the identification of other sources of data and methods to

monitor biodiversity.

Casual observations collected without following a struc-

tured protocol by members of the public may potentially

contribute to research and conservation, and a growing

number of unstructured ‘citizen science’ databases have

become available in recent years (Devictor et al., 2010; Sulli-

van et al., 2014; Theobald et al., 2015). However, several

sources of bias in unstructured data are well known and the

information content of unstructured data can be highly vari-

able (Dickinson et al., 2010; Hochachka et al., 2012; Isaac &

Pocock, 2015). Field observations collected in an unstruc-

tured manner usually do not represent random samples and

exhibit considerable spatial bias towards more densely popu-

lated regions (Boakes et al., 2010; Lin et al., 2015), protected

areas, and areas rich in biodiversity and threatened species

(Tulloch et al., 2013a). Observation effort is not standardized

as in structured monitoring schemes (Dickinson et al.,

2010), and there might be considerable reporting bias, as

many observers tend to report only unusual or rare species

(van Strien et al., 2013). These characteristics of unstructured

data make it difficult to assess how reliable they can be for

biodiversity monitoring.

Several approaches have been developed to account for

some of the bias inherent in unstructured data and extract

more reliable information (van Strien et al., 2010;

Hochachka et al., 2012; Isaac et al., 2014). Correcting for

varying observation effort in unstructured data has been

achieved using the number of species reported per visit (‘list

length’; Szabo et al., 2010) or, where recorded, the time

spent per field visit (Kindberg et al., 2009). A more signifi-

cant challenge, the problem that an unknown proportion of

those species that are present will not be detected during a

given visit, has been addressed using site-occupancy models

that account for imperfect detection and may simultaneously

correct for reporting bias (K�ery et al., 2010a,b; van Strien

et al., 2013). However, a robust validation of such

approaches is necessary before unstructured data can be used

with confidence for biodiversity monitoring (Isaac et al.,

2014).

The value of unstructured monitoring data can be assessed

by comparing population trends derived from unstructured

citizen science data against the best available independent,

structured monitoring schemes. Previous comparisons have

detected correlations between reporting rates from weakly

structured atlas data and data from a standardized random-

sampled survey that range from strong (Szabo et al., 2012)

to weak and inconsistent (Sn€all et al., 2011). Accounting for

imperfect detection using occupancy models based on

comprehensive species lists matched the trends of a robust

monitoring scheme better than presence-only data (van

Strien et al., 2010), and strong trends in structured monitor-

ing data may be recovered from unstructured data when

analysed with occupancy models (van Strien et al., 2013;

Isaac et al., 2014). The usefulness of unstructured data there-

fore clearly depends on how they are processed and analysed.

One major difference between many long-term structured

monitoring programmes and unstructured citizen science

data is that the former often provide counts or indices of

abundance, whereas unstructured citizen science data often

only provide detection/non-detection data because of highly

varying recording intensity in space and over time (Isaac

et al., 2014). However, if unstructured data are to fulfil the

role of structured monitoring programmes, then they need

to be able to identify approximately the same population

trends as structured monitoring despite this inherent differ-

ence in data quality. Because even simple detection/non-

detection data can allow inference about the abundance of a

population (Royle & Nichols, 2003), population trends

should be detectable with unstructured citizen science data

(van Strien et al., 2013; Isaac et al., 2014), but may be less

reliable than trends derived from structured monitoring data

with higher information content (Johnston et al., 2015). The

potential for unstructured data to recover trends could there-

fore possibly be improved using only records with higher

information content (Roy et al., 2012). A typical deficiency

of many online public databases is the lack of differentiation

between complete species lists (which allow inference about

the non-detection of species) and incidental records of a sub-

set of the species actually observed (K�ery et al., 2010b; van

Strien et al., 2013; Tulloch et al., 2013b). Using data sets

with higher information content that allow the statistical

modelling of detection probability can yield improved trend

estimates (K�ery et al., 2010a; Isaac & Pocock, 2015), but

whether such filtering can overcome other deficiencies of

unstructured citizen science data is unclear.

Here, we assess whether unstructured observation records

can recover population trends derived with confidence from

structured surveys, despite having data with inherently lower

information content. We use unstructured bird monitoring

data from a country-wide public online database containing

more than 12 million records collected over 28 years in Den-

mark. We first estimated population trends of 103 bird spe-

cies from unstructured data using occupancy models. We

then correlated these trends with population trends estimated

over the same period by a structured, standardized common

bird monitoring programme in the same country. Finally, we

compared trend estimates from both data sources and

assessed whether mismatches in these estimates were a conse-

quence of fundamentally different information content by:

(1) reducing the information content of structured monitor-

ing data from count to detection/non-detection data, and (2)

applying multiple filtering criteria to retain only records in

the unstructured data with increasing information content.

Our study thus provides a thorough examination of the
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potential of unstructured citizen science data to detect popu-

lation trends and identifies factors that may affect the corre-

spondence between structured and unstructured data sources

for biodiversity monitoring.

MATERIALS AND METHODS

Structured monitoring and unstructured observation

data

The Common Bird Monitoring (CBM) scheme in Denmark

was established in 1975 (Heldbjerg et al., 2014) following

standard guidelines for structured bird monitoring pro-

grammes (Gregory et al., 2004). Birds were monitored once

during the breeding season (1 May to 15 June) on observer-

chosen (non-randomly placed) routes, with each route con-

taining 10–20 points which were spaced at least 300 m apart

and were visited each year by the same observer. At each

point, all birds seen or heard within a 5-min interval were

counted. This forms the key difference to unstructured

observation data, which are generally obtained from random

surveys of highly variable duration yielding only detection/

non-detection information. Although no a priori stratifica-

tion of routes was applied, the survey routes covered all

main habitat types in Denmark and were distributed rela-

tively evenly across the country with no obvious concentra-

tions in urban areas. We used data from 1986 to 2013,

during which the number of routes remained relatively stable

at between 300 and 400 (Fig. 1; Heldbjerg et al., 2014).

We used unstructured observation data from the online

database ‘DOFbasen’ (http://www.dofbasen.dk, Nyegaard

et al., 2012), developed by the Dansk Ornitologisk Forening

(DOF). DOFbasen was launched in 2002, and most observa-

tions have been entered since then (Fig. S1 in Supporting

Information). However, many observers have entered data

retrospectively, and DOFbasen now holds sufficient historical

data to compare trends with structured monitoring data

from 1986 to 2013. All records include key fields such as spe-

cies, date and location. As with many public online data-

bases, DOFbasen did not differentiate until 2012 between

complete bird lists (lists of all the species observed on each

visit) and incidental records of a subset of the species

observed (K�ery et al., 2010b; van Strien et al., 2013; Tulloch

et al., 2013b).

Observations recorded in DOFbasen were not distributed

randomly across Denmark (Fig. 1). However, records cov-

ered all parts of the country and areas with a larger number

of structured monitoring survey routes from the common

bird monitoring overlapped with areas of high DOFbasen

data density (Spearman’s rank correlation between the num-

ber of contributed DOFbasen records and the number of

common bird monitoring counts per 100 km2 area,

rS = 0.78; Fig. 1). It is therefore reasonable to assume that

trends derived from these unstructured data were as repre-

sentative of a well-covered country such as Denmark as the

structured monitoring data.

Population trend estimation

We compared population trends estimated from a standard-

ized population monitoring scheme (CBM) and from

unstructured observation data (DOFbasen) to assess the

extent to which trends estimated from the two data sources

matched. We estimated population trends for 103 species

breeding in Denmark (Table S1) over a 28-year period

(1986–2013) for which data were available from both data

sources. However, because the citizen science database was

launched only in 2002, we also estimated trends for a shorter

11-year period (2002–2013) corresponding to the period

after the launch of the database when observers could enter

contemporary records.

From the structured monitoring data, we estimated a pop-

ulation trend for each species using a generalized linear

mixed model with a Poisson error distribution and a random

‘route’ effect to account for spatial and habitat differences at

the route level. This approach is the standard analytical pro-

cedure for estimating trends from bird count data when no

ancillary data (e.g. distance to detected birds, continuous

covariates affecting detectability) or repeat visits are available

to account for imperfect detection (K�ery & Schaub, 2012;

Inger et al., 2014). We implemented the GLMM in R pack-

age ‘lme4’ for each species with the generic formula glmer

(Number ~ Year + (Year|Route_ID), family = ‘poisson’).

‘Year’ was fitted as a continuous covariate.

From the unstructured citizen science data, we first

extracted only breeding season records (May and June), cor-

responding to the recording period of the structured moni-

toring scheme. Every record in DOFbasen includes a location

Figure 1 Map of Denmark showing the distribution of

common bird monitoring census points used between 1986 and

2013 (black dots) and the distribution of records available from

the online database ‘DOFbasen’ until 2013 aggregated over a

grid of 10 9 10 km squares. Darker shading indicates higher

density of records. The quantity of data from each data source

per grid cell was positively correlated (rS = 0.78).
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identifier, which served as our definition of a ‘site’ at which

observations of species were recorded, but these sites are not

of a defined size, which makes any abundance information

difficult to interpret. Every visit to a site that was entered

into the online database was treated as a ‘list’ of species, and

species that were not recorded on the list were assigned a

value of 0 (not observed or not reported). To estimate

population trends from the unstructured data, we used a

multi-year occupancy modelling framework to account for

imperfect detection or recording (van Strien et al., 2013;

Isaac et al., 2014). We used the detection/non-detection

information contained in contributed species lists and con-

sidered that two covariates influenced the probability of

detection: we included ‘month’ (May or June) as a covariate

because for some birds, the probability of detection can vary

over the course of the breeding season, and we included the

number of species recorded during that visit at that site, as

an indication of observer effort and quality (Franklin, 1999;

Roberts et al., 2007; Szabo et al., 2010).

We fitted occupancy models using Markov Chain Monte

Carlo (MCMC) methods in a Bayesian framework following

the approach described by Isaac et al. (2014), including a

random site effect to account for spatial differences. The

trend model component of the multi-year occupancy model

was therefore structurally similar to the trend GLMM used

for the structured monitoring data described above. For each

species, we ran three Markov chains each with 5000 itera-

tions and discarded the first 2500 iterations as burn-in. From

the remaining iterations we only used every second iteration

for inference. Convergence was tested using the Gelman-

Rubin diagnostic (Brooks & Gelman, 1998), and trend esti-

mates were retained only if this diagnostic indicated conver-

gence (R-hat < 1.02). We fitted all occupancy models in JAGS

3.3 (Plummer, 2012) via the R2JAGS package (Su & Yajima,

2012) called from R 3.1.1 (R Development Core Team,

2013).

Comparison of trends derived from structured and

unstructured data

We used Spearman’s rank correlation coefficient to assess

whether population trends derived from the unstructured

and the structured data across the 103 species were corre-

lated using a significance threshold of a = 0.05, and we per-

formed separate correlations for the long (1986–2013) and

the short (2002–2013) time series. Because the correlation

does not account for the uncertainty in trend estimates, we

also compared the direction of trend estimates between the

two data sources taking uncertainty into account. We first

classified trend direction as either increasing or decreasing if

the 95% confidence interval of the estimated population

growth rate was > 0 or < 0. Species for which the 95% confi-

dence interval of the estimated population growth rate

spanned 0 were considered to have stable or inconclusive

trends. We then cross-tabulated the trend directions from

both data sources and calculated the proportion of species

that had matching and non-matching trend directions for

the period 1986–2013 and 2002–2013.

Examining causes for mismatches in trend direction

Because the structured monitoring data have a higher infor-

mation content than the unstructured data (abundance vs.

detection/non-detection), and because the value of unstruc-

tured monitoring data may vary among species (van Strien

et al., 2013), we expected some discrepancies among trend

estimates and examined whether these were due to the infor-

mation content of the data or could be explained by species-

specific traits such as abundance and migratory strategy.

To examine the information content of data, we first

reduced the structured monitoring data to simple detection/

non-detection data and estimated trends using a similar

GLMM as described above but with a binomial rather than a

Poisson error structure, which is analogous to the trend

model used for the unstructured data. In a second step, we

aimed to increase the quality of the unstructured data by

retaining only selected records with high information con-

tent. We applied three hierarchical data filters to the unstruc-

tured data, discarded all records that did not meet these

filtering criteria and estimated trends from the data remain-

ing after each iteration.

The first filter was applied to the number of species

recorded during a site visit to increase the likelihood that a

list was complete and that the species missing from that list

could therefore be considered as not observed in data analy-

sis. We discarded all records that reported only a single spe-

cies during a visit to one site on one day, and considered the

remaining lists ‘complete’ if the number of species recorded

exceeded a threshold that was scaled to the total number of

species recorded at a given site to avoid bias due to spatial

effects of species richness (K�ery et al., 2010a). We explored

three different thresholds, considering lists as ‘complete’ if

the number of recorded species exceeded 5%, 10% or 25%

of the cumulative total number of all species ever recorded

at a particular site. We explored higher thresholds, but

because the number of records that reported > 25% of all

known species at a site was very small, it was rarely possible

to estimate trends when a higher threshold was chosen.

The second data filtering step considered the number of

reported visits to a given site during May and June in

one year. Repeat visits during a period of demographic clo-

sure are necessary to account for imperfect detection in an

occupancy modelling framework. The probability of observ-

ing a species increases with the number of visits to a site,

and we therefore used thresholds of 3, 5 and 10 visits during

the breeding season to include sites in the estimation of

occupancy. We eliminated sites that had less than the various

thresholds of site visits on the subset of ‘complete’ lists based

on the criteria described in the first filtering step above. The

third and final data filtering step considered the number of

years during which sites were covered with a sufficient num-

ber of visits meeting the criteria for ‘complete’ lists (Roy
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et al., 2012; Isaac et al., 2014). Trend estimation is generally

more reliable if the same sites are monitored over a longer

period of time. We therefore eliminated sites if they had vis-

its with ‘complete’ lists for < 3, < 5 or < 10 years. These dif-

ferent data filtering rules resulted in a total of 27

combinations (3 thresholds for list length, 3 thresholds for

number of visits and 3 thresholds for number of years) of

selected data for estimating annual occupancy and popula-

tion trend for all our target species. For the estimation of

trends from 2002 to 2013, we omitted the data filtering step

that mandated sites with at least 10 years of monitoring data,

because the monitoring interval included only 11 years and

very few sites matched this criterion.

Besides the information content of the data, we also exam-

ined species-specific biological traits that explained statistical

variation in the mismatches between population trend esti-

mates derived from structured and unstructured data. We

used the cross-tabulation of matching and non-matching

trend estimates over the period 1986–2013 described above

and linked this response (match/mismatch) to five explana-

tory variables: male body mass (as a proxy for body size),

national population size in Denmark, breeding system (colo-

nial, semi-colonial and territorial), habitat preference (mar-

ine, coastal, inland wetland, boreal and temperate forests,

farmland and grassland, habitat generalists) and migration

strategy (resident, partial migrant, migrant within Europe,

short-distance migrant to North Africa or the Middle East,

long-distance migrant to sub-Saharan Africa or Asia). We

extracted body mass data, migration strategy and habitat

preferences from standard references (Glutz von Blotzheim,

1985–1998; Tucker & Evans, 1997; Snow & Perrins, 1998).

Population size was calculated as the geometric mean of the

minimum and maximum population estimates for Denmark

(BirdLife International, 2004).

We used a machine-learning algorithm based on ensem-

bles of regression trees (RandomForest) to evaluate which of

these five variables explained the most variation in mis-

matching trend estimates (Cutler et al., 2007; Hochachka

et al., 2007).We used a random forest procedure with unbi-

ased classification trees based on a conditional inference

framework (package ‘party’ in R 3.1.1; Hothorn et al., 2006)

that allows to account for bias in variable importance mea-

sures among categorical variables with different numbers of

levels (Strobl et al., 2007; Boulesteix et al., 2012). We con-

structed 1500 classification trees and used a random subset

of 64% of the data without replacement to build single trees.

We report the relative variable importance as the decrease in

model accuracy after permutation scaled to 100% for the

most important variable. The accuracy of the random forest

model was assessed with a simple confusion matrix of the

predicted and actual trend estimate matches.

RESULTS

Based on the structured monitoring for the full 28 years, 60

species showed significant long-term declines in abundance,

26 species increased significantly and the remaining 17 spe-

cies showed either stable or fluctuating populations without

a significantly positive or negative trend (Table 1). For the

shorter time period (2002–2013), 48 species declined signifi-

cantly, 25 species increased significantly and 30 were stable

or the trend estimate was too imprecise to assign the trend

as increasing or decreasing (Table S2). By contrast, the

unstructured data identified only 20 species as declining over

28 years (19 species over 11 years), 49 species as increasing

(48 over 11 years) and 34 species (35 over 11 years) that

were either stable or where the trend estimate was too

imprecise (Tables 1 & S2).

There was a general positive correlation between popula-

tion trends estimated from structured and unstructured data

sources (Table 2, Fig. 2). However, despite the positive cor-

relation between trends derived from structured and unstruc-

tured data, the direction of trend estimates matched for

< 50% of species when taking the uncertainty in trend esti-

mates into account (Table 1). The majority of species that

were in decline based on the structured monitoring were

estimated to have a stable or increasing population trend in

the unstructured data (Table 1). Conversely, population

declines estimated from unstructured data were largely con-

firmed by the structured monitoring (Table 1).

Reducing the information content of the structured moni-

toring data to estimate trends in occupancy rather than

abundance did not increase the strength of the trend correla-

tion (Table 2, Fig. 2) or the proportion of matching trend

directions between structured and unstructured data

(Tables 1 & S2 for 2002–2013). Similarly, filtering the

unstructured data to retain only data with higher informa-

tion content did not improve the strength of the correlation;

increasingly strict filters led to poorer correlations (Table 2).

By contrast, trends in occupancy and abundance derived

from the structured monitoring data were strongly correlated

(rS = 0.87, Fig. S2), and the trend direction matched for

82.5% of all species (Table S3).

The three most important variables explaining the mis-

match of trend estimates between the structured monitoring

and unstructured citizen science data were population size,

body size and habitat preference (classification success of

random forest model = 84.2%). Trend estimates did not

match at all for very abundant species (blackbird Turdus

merula, chaffinch Fringilla coelebs and skylark Alauda arven-

sis, all with population sizes > 1 million birds) and matched

poorly for relatively small birds, especially in forest and

inland wetland habitats (Fig. 3). When the structured moni-

toring data were reduced to detection/non-detection data,

mismatches in trend direction were almost exclusively

explained by male body size (classification success = 80.3%),

with birds below 500 g body size having generally poorly

matching trends, while trend estimates matched well for

birds > 500 g. In both analyses, migration strategy and

breeding system had no influence on the extent to which

trends from the two data sources matched (both < 5% rela-

tive variable importance).
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DISCUSSION

Population trends estimated from structured and unstruc-

tured data were generally positively correlated, but there was

substantial variation among species, and the declines of many

common species were not detected with unstructured citizen

science data. This pattern was evident regardless of whether

we used the abundance information in the structured

monitoring data or reduced these data to simple detection/

non-detection data. We therefore conclude that structured

monitoring programmes are more powerful to detect popula-

tion declines than unstructured citizen science data.

Many common European bird species are declining (San-

derson et al., 2006; Inger et al., 2014), and range retractions

are also common (Balmer et al., 2014). However, more than

half of the species that showed significant long-term popula-

tion declines in both abundance and occupancy based on

our structured monitoring data were classified as either

stable or even increasing by the unstructured data (Table 1).

This discrepancy indicates that caution is needed when using

unstructured data for estimating population trends, and that

unstructured citizen science data cannot generally replace

standardized monitoring schemes. While this mismatch may

be explained by factors such as the reporting of complete

lists which may not apply to all online databases, we caution

that unstructured citizen science data may not fulfil one of

the most critical functions of structured monitoring pro-

grammes, namely to act as an early warning system that

detects population declines, especially of common and wide-

spread species (Inger et al., 2014).

The structured monitoring data yielded similar numbers

of species declining, increasing or with stable or inconclusive

trend regardless of whether we used abundance data or

reduced the information content to use just detection/non-

detection data. The mismatching trends derived from struc-

tured monitoring data and unstructured citizen science data

are therefore not due to the inherently lower information

content of unstructured data. Furthermore, our filtering to

extract only records with the highest information content

from the unstructured citizen science data did not improve

the correlation between trend estimates. Stricter filter criteria

led to a rapid decline in the amount of data that passed the

filter, and trend estimates resulting from these smaller data

sets were generally less reliable. Appropriate modelling of the

various sources of bias in citizen science data may therefore

be the best strategy to derive the most reliable trend infor-

mation (van Strien et al., 2013; Isaac et al., 2014), but this

information is nonetheless inferior to the power of standard-

ized monitoring programmes in detecting species declines.

In situations where structured monitoring is not feasible

or too costly, online databases might constitute the only data

sources available. While such data can be informative, their

value for trend monitoring could be improved by informing

contributors about deficiencies (Sullivan et al., 2014). For

example, in our data set, the number of visits to sites every

year was highly skewed, with some sites receiving > 500 visits

per year, and others only single visits. Encouraging recorders

to repeatedly contribute data from rarely visited areas might

increase the suitability of data for trend analyses using rec-

ommended methods that account for imperfect detection

(van Strien et al., 2013; Isaac et al., 2014; Isaac & Pocock,

2015). The skewed distribution of visits is likely a result of

casual observers frequenting easily accessible, well-known

and ‘interesting’ sites (e.g. sites with high diversity or rare

species, Tulloch & Szabo, 2012; Tulloch et al., 2013a). One

solution to this problem could be to survey regions and

habitats that are neglected by casual observers with profes-

sional observers (Tulloch et al., 2013a), an approach used

during fieldwork of the recent UK breeding bird atlas (Bal-

mer et al., 2014). There are many other approaches for entic-

ing ‘citizen scientists’ to provide data that are of higher

information content, but the effort required to do this may

be better spent on designing a structured monitoring scheme

and recruiting observers to participate in this scheme (Isaac

& Pocock, 2015). After all, the structured monitoring data

we analysed here were also collected by volunteer ‘citizen sci-

entists’, who follow a certain set of standard protocols which

renders trend estimation and inference more reliable.

Table 1 Number of species with matching and non-matching population trend directions for 103 bird species between 1986 and 2013

in Denmark derived from an unstructured observation database and a structured monitoring scheme using either original abundance

data or simple detection/non-detection data (occupancy)

Unstructured data

Decreasing Stable/inconclusive Increasing

Structured monitoring Abundance Decreasing 16 23 21

Stable/inconclusive 4 7 6

Increasing 0 4 22

Occupancy Decreasing 18 25 24

Stable/inconclusive 2 4 1

Increasing 0 5 24

Trends were considered increasing or decreasing if the 95% confidence interval of the population growth rate estimate was > 0 or < 0, respec-

tively, and stable or inconclusive if the interval spanned 0.
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The most important biological variables explaining mis-

matching population trend estimates were population size

for the abundance data and body mass for occupancy. Abun-

dance trends estimated for extremely common and wide-

spread species matched very poorly between the structured

and unstructured data, which may be a consequence of the

unstructured data yielding only information about occur-

rence: very common species may experience declines in

abundance before completely disappearing from certain

areas, and the unstructured data may therefore not be ideal

to detect the declines of common species which are currently

occurring across Europe (Inger et al., 2014). When we

reduced the structured monitoring data to occurrence data,

the mismatches persisted but were better explained by male

body size, indicating that trends of mostly small birds are

very poorly captured by the unstructured citizen science

data.

Another potential explanation for differences in trend esti-

mates could be that the different analytical approaches used

for both data sources account for variable amounts of uncer-

tainty. In particular, imperfect detection is a well-known

problem for the monitoring of wild animals (Royle &

Nichols, 2003; K�ery et al., 2009). We used occupancy mod-

elling to correct for varying detection probability in the

unstructured data, but we could not apply this method to

the structured monitoring data as neither repeated visits nor

ancillary data were available from our CBM programme, as

is the case for a large number of standardized monitoring

programmes (Schmeller et al., 2012). While our method of

trend estimation incorporates some uncertainty associated

with spatial heterogeneity, the inability to account for imper-

fect detection may introduce bias into the structured moni-

toring data if detection probability changes systematically

over time (K�ery et al., 2010b).

Table 2 Correlation (Spearman’s rank correlation coefficient rS) between population trend estimates for 103 bird species derived from a

structured monitoring scheme and an unstructured observation database filtered by certain criteria over a 28-year period (1986–2013)
and an 11-year period (2002–2013) in Denmark

Proportional list length n visits n years

Abundance Occupancy

rS (28 years) rS (11 years) rS (28 years) rS (11 years)

Unfiltered data 0.600 0.491 0.625 0.501

0.25 10 10 0.147 0.175

5 0.327 0.184 0.376 0.199

3 0.355 0.185 0.412 0.202

5 10 0.353 0.346

5 0.314 0.197 0.374 0.121

3 0.358 0.179 0.432 0.212

3 10 0.363 0.350

5 0.402 0.246 0.459 0.259

3 0.408 0.357 0.467 0.374

0.1 10 10 0.475 0.484

5 0.357 0.191 0.405 0.171

3 0.388 0.222 0.444 0.211

5 10 0.413 0.463

5 0.424 0.416 0.515 0.353

3 0.437 0.438 0.510 0.394

3 10 0.464 0.541

5 0.485 0.479 0.550 0.463

3 0.501 0.491 0.574 0.482

0.05 10 10 0.384 0.444

5 0.390 0.348 0.469 0.336

3 0.409 0.359 0.479 0.355

5 10 0.470 0.545

5 0.485 0.435 0.537 0.419

3 0.469 0.426 0.528 0.426

3 10 0.517 0.570

5 0.503 0.465 0.567 0.434

3 0.498 0.453 0.548 0.438

Data from the structured monitoring were either used as counts (abundance) or reduced to detection/non-detection (occupancy). Filters were

applied in a hierarchical fashion based on the number of species recorded during each visit (as proportion of the total species number ever

recorded at a given site, prop. list length), the number of visits with ‘complete’ lists in a given year, and the number of years with sufficient visits

with ‘complete’ lists. Strongest correlations are highlighted in bold.
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Non-matching trends from the two data sources could

arise either because the unstructured data were inadequate

for trend estimation, or the structured monitoring was inad-

equate for certain species that prefer habitats that are poorly

covered by the routes used for the structured monitoring.

Structured monitoring schemes are generally designed to

cover a large number of common, widespread and territorial

species (Newson et al., 2005). Such schemes are therefore

often unsuitable for species with localized breeding distribu-

tions such as some waterbird species, which may explain the

poorly matching trends estimated for species preferring

inland wetlands (Fig. 3). Non-matching trends for such

species highlight the potential value of unstructured online

databases even in countries where structured monitoring

schemes exist: casual observations for some species may pro-

vide a better basis for population trend estimation than

structured monitoring routes that are suboptimal for certain

species. However, trends derived from unstructured data

would have to be validated with relevant monitoring schemes

such as specific wetland bird counts (Zbinden et al., 2014).

Identifying the species that are poorly covered by structured

monitoring schemes and communicating this knowledge gap

to casual observers may enhance the value of data con-

tributed to online databases.
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Figure 2 Correlation between population trend estimates (� 95% confidence interval) derived from structured monitoring data

(CBM) and from unstructured observation records (DOFbasen) for 103 bird species in Denmark in 1986–2013 (a and b) or 2002–2013
(c and d); trends from structured monitoring data were either based on abundance data (a and c) or reduced to detection/non-

detection data (b and d). Note that the scale of axes differs among plots for better clarity.
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model classifying trend matches.
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Further important causes of non-matching trends between

structured and unstructured data are changes in reporting

behaviour or the observer community over time (Sn€all et al.,

2011). We found positive trends for several common species

in the unstructured data, which declined according to the

structured monitoring data. There are two potential explana-

tions for this pattern: (1) the initial contributors to an online

reporting scheme are likely to be experienced birdwatchers,

who may tend to record mostly those species they consider

‘interesting’ (Isaac & Pocock, 2015). As a scheme becomes

more publicized and widely known, an increasing number of

citizens might join who may record also more common and

widespread birds (Fig. S1). Our finding that trends did not

match for the most common and smallest species is consis-

tent with such an interpretation. (2) In addition to the

change in the reporting community, declines of species

revealed by structured monitoring schemes might be publi-

cized and lead to a higher awareness among birdwatchers,

resulting in changes in reporting behaviour and more con-

tributed records of formerly common and underreported

species (Sn€all et al., 2011). Examples in our data that are

consistent with such explanations include the House Sparrow

(Passer domesticus; widespread, heavily publicized declines of

a familiar urban bird, Hole et al., 2002; De Laet & Summers-

Smith, 2007) and the Willow Warbler (Phylloscopus trochilus;

flagship species for a suite of declining long-distance

migrants, Morrison et al., 2010). The best solution to tackle

reporting bias is to offer recorders the possibility to submit

‘complete’ checklists, that is lists that contain all species

recorded and allow inference about species that were not

detected (Sullivan et al., 2009; K�ery et al., 2010a; van Strien

et al., 2013). This feature, which was absent from the Danish

online database when we conducted our analysis, has in the

meantime been launched in Denmark and other online data-

bases and is considered a standard solution to address some

of the biases inherent in citizen science data (Isaac & Pocock,

2015).

CONCLUSIONS

Our analyses suggest that citizen science data collected using

unstructured methods may be useful for biodiversity monitor-

ing for species or in areas where dedicated, structured survey

data are not available, but that various sources of bias need to

be considered in the interpretation of population trend esti-

mates. We recommend retaining all data for analysis and

encouraging database managers to distinguish between the

reporting of complete and incomplete lists. We suggest that in

countries currently without dedicated monitoring systems,

encouraging observers to submit records to online databases

could make a useful contribution to the monitoring of biodi-

versity. In countries where structured monitoring data are

available, unstructured databases may play a useful role in

public education and monitoring of areas or species that can-

not be covered with a structured approach. However, our

results warn against abandoning existing structured

monitoring schemes in the hope that unstructured data con-

tributed by volunteers would be able to fulfil the same pur-

pose with the same power and precision.
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