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a b s t r a c t

Marine plastic pollution is a global problem with considerable ecological and economic consequences.
Quantifying the amount of plastic in the ocean has been facilitated by surveys of accumulated plastic on
beaches, but existing monitoring programmes assume the proportion of plastic detected during beach
surveys is constant across time and space. Here we use a multi-observer experiment to assess what
proportion of small plastic fragments is missed routinely by observers, and what factors influence the
detection probability of different types of plastic. Detection probability across the various types of plastic
ranged from 60 to 100%, and varied considerably by observer, observer experience, and biological ma-
terial present on the beach that could be confused with plastic. Blue fragments had the highest detection
probability, while white fragments had the lowest. We recommend long-term monitoring programmes
adopt survey designs accounting for imperfect detection or at least assess the proportion of fragments
missed by observers.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Pollution of marine and coastal environments with discarded,
lost, and ‘disposable’ plastic items is a rapidly increasing and sig-
nificant global issue (UNEP, 2014). Plastic pollution has been linked
directly to the injury or mortality of an enormous array of marine
wildlife (Gall and Thompson, 2015) and incurs large financial costs
through lost tourism, the creation of shipping hazards, and clean-
up programmes (Barnes et al., 2009; Vegter et al., 2014). Substan-
tial effort has therefore been directed towards monitoring,
removing, or preventing plastic from entering the marine envi-
ronment (Ocean Conservancy, 2015), including a range of national
and international programmes (e.g., International Pellet Watch,
Australian Marine Debris Initiative) focused on collecting quanti-
tative data on plastic accumulation patterns and associated hazards
such as absorbed co-pollutants (Ogata et al., 2009).

Beach surveys implemented by scientists or the general public
are an important source of data on the type and provenance of
plastic debris on beaches around the world (Ivar do Sul et al., 2011;
Lee and Sanders, 2015). Systematic beach surveys or clean-up
programmes have been promoted as a tool to provide
ntarctic Studies, University of
nia, 7004, Australia.
vers).
comparative baseline data on the distribution, abundance, and
accumulation of plastic debris (Rees and Pond, 1995; Ribic et al.,
2010, 2012). Such systematic programmes can also be used as
long-termmonitoring tools to document temporal trends inmarine
plastic pollution (Bravo et al., 2009; Hidalgo-Ruz and Thiel, 2013).
However, using the number of plastic items collected by observers
along a certain stretch of beach, and comparing these numbers
across space and time, rests on the critical assumption that a con-
stant proportion of plastic pieces is detected and recorded. The
assumption of perfect detection has been widely criticized in the
monitoring of biological populations, and numerous approaches
have been developed to account for imperfect detection (Buckland
et al., 2008; K�ery and Schaub, 2012; Nichols et al., 2009). For
example, counts of mobile birds and lizards depend on the
observer, weather, habitat, and several other factors (Alldredge
et al., 2007; K�ery et al., 2009; Schmidt et al., 2013), and even
counts of sessile plants are generally considered to be less than
perfect and vary with substrate and observer experience (Bornand
et al., 2014; Burg et al., 2015; Dufrêne et al., 2015). However, such
effects have, to our knowledge, not been considered in the majority
of beach plastic studies (but see Hidalgo-Ruz and Thiel, 2013). As a
consequence, temporal or spatial comparisons of beach plastic
accumulation may be biased if certain plastic particles are easier to
detect and count at certain sites or during certain times. While
large plastic objects (e.g., bottles, buoys, etc.) are likely to be
counted with little error, smaller plastic debris is much harder to
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Fig. 1. A 50 � 50 cm quadrat located along the high tide line of North Beach, Hen-
derson Island, in July 2015. Observers were given 2 min to visually estimate the total
number of white, black, and blue plastic fragments, and white and black plastic pellets.
The percent cover of pale-coloured coral rubble and darker biological material was
included in the analysis. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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detect (Baztan et al., 2014; Convey et al., 2002).
Increasing recognition of the hazard posed by small debris to

marine wildlife, and expansion of citizen science programmes
which contribute debris data over large areas (e.g., National Sam-
pling of Small Plastic Debris programme in Chile and Australian
Marine Debris Initiative), has highlighted a growing need for reli-
able data on micro-plastics (<5 mm; Hidalgo-Ruz and Thiel, 2013;
McDermid and McMullen, 2004). A number of current debris
monitoring programmes include micro-plastics (Costa et al., 2010;
McDermid and McMullen, 2004; Thompson et al., 2004), which are
counted manually on beaches. Floatation (where sediment is
placed inwater, buoyant plastics rise to the surface and more dense
debris is then sorted in the sediment) can be effective for some
types of plastic polymers, but still relies on manual sorting for a
portion of debris which is both time consuming and prone to errors
(Nuelle et al., 2014). Approaches to account for imperfect detection,
therefore, may be useful to ensure that data from beach survey
programmes are comparable across space and time.

Here we used recent statistical advances for the monitoring of
wildlife populations (D�enes et al., 2015; K�ery and Schaub, 2012) to
examine whether the detection of plastic debris on beaches can,
and should, be accounted for. We investigated which type of plastic
debris had a probability of detection substantially less than 100%,
and explored the relative importance of observer heterogeneity,
beach substrate, and plastic visibility, on the detection probability
of plastic items varying in size and colour. This assessment provides
a first estimate as to what proportion of plastic is missed routinely
in beach survey programmes, and provides guidance on the design
of future monitoring programmes to account for variable detection
probabilities of different types and colours of plastic.

2. Methods

2.1. Data collection

A confounding issue for the interpretation of plastic found on
beaches is how much was washed ashore and how much was
deposited locally by people. To avoid this issue and ensure that all
encountered plastic waswashed ashore from the sea, we conducted
our study on one of the remotest islands of the world, far from
anthropogenic debris sources.

Henderson Island (24�20 S, 128�19 W), one of four islands
belonging to the Pitcairn Island group, is an uninhabited island in
the South Pacific Ocean. The island is surrounded by a fringing
limestone reef with open sandy beaches on the north, east, and
north-western shorelines. Over a two-day period in July 2015,
thirty-three 50 � 50 cm quadrats were centred along the high tide
line of the northern beach, which has a pale coral sand substrate
with white coral pebbles and small amounts of black biological
debris (Fig. 1). Five observers visually inspected each quadrat
independently for two minutes, recording the number and colour
of specific plastic items present. Observers were not allowed to
touch or re-arrange anything in a quadrat to maintain identical
conditions among observers, and the entire trial was completed
within 1.5 h before tidal action could alter the abundance of plastic
in each quadrat.

Micro-plastic items are increasingly the focus of pollution
monitoring programmes (Costa et al., 2010; McDermid and
McMullen, 2004; Thompson et al., 2004). We therefore focused
on five different types of plastic items ranging in size from 2.5 to
60 mm, representing a range of plastic items that are very easy or
very difficult to detect given the substrate of the beach in our study
area. We chose white, black, and blue fragments of all sizes to
represent items that contrast little, moderately, and strongly with
the beach substrate, respectively. In addition, we counted black and
white resin pellets (‘nurdles’; average 2.7 mm diameter), as these
tiny but readily identifiable items are considered a priority in many
beach clean-up and monitoring programmes (e.g., International
Pellet Watch; Ogata et al., 2009).

The detection of plastic particles on a beach can depend on
multiple factors, such as the experience of the observer, visibility, or
other objects that can be confused with or obscure plastic particles.
We therefore recorded the observer identity and the order inwhich
the 33 quadrats were examined by each observer to account for
improvements or deterioration of detection over time. We further
estimated cloud cover to the nearest 10% for each 2 min interval
during which observers counted plastic to account for differences
in detectability of plastic particles in bright sunlight and in cloudy
conditions. Lastly, we estimated the cover of pale-coloured coral
rubble and dark-coloured biological debris (e.g., dried algae, seeds,
charcoal, and leaves) for each quadrat to the nearest 5% to account
for substrate effects on the detectability of plastic.

After all observers had recorded the abundance of all types of
plastic in each of the 33 quadrats independently, we carefully
removed the top layer of sediment (ca. 3e5 mm) in each quadrat to
determine the true abundance of plastic items, ensuring that only
surface plastics but no buried items were collected. For each
quadrat, we placed the sediment in a bucket of sea water following
methods outlined by Hidalgo-Ruz et al. (2012), allowing low-
density plastic items to be collected and sorted once they had
floated to the surface (Imhof et al., 2012). We then examined the
sediment for any high-density plastics that may have settled to the
bottom, and added the two components to yield the total number
of plastic present in each quadrat.

2.2. Statistical analysis

Ourmain goal was to estimate the number of five different types
of plastic particles in 33 sampling quadrats from a series of inde-
pendent counts conducted by five different observers. We then
compared those estimates to the true number of particles retrieved
from each quadrat to assess whether a multiple observer design
could provide an accurate statistical estimate of the amount of
plastic. Finally, we examined which of several factors affected the
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probability of detection for the five different types of plastic in our
study.

Our analysis was guided by recent analytical developments in
the wildlife literature that allows the estimation of detection
probability and abundance from repeated counts (Chandler and
King, 2011; K�ery, 2008; K�ery et al., 2005; Royle and Nichols,
2003; Royle et al., 2005). Because the same observer is unlikely to
provide independent counts of the same static objects in a quadrat,
we used the five independent counts provided by different ob-
servers as repeat counts of the same quadrat.

We estimated plastic abundance and detection probability using
binomial mixture models (K�ery et al., 2005; Royle and Nichols,
2003; Royle et al., 2005). These models use the repeated observa-
tions for a given sampling quadrat to separately estimate the
probability to detect plastic particles and the number of plastic
particles in this quadrat. Briefly, these models consist of two
components which link the state of interest (abundance of plastic)
and the observation process (detection probability) in a hierarchical
fashion:
Ni � PoissonðlÞ 1: State process that describes the abundance at site i

yi;j
���Ni � Binomial

�
Ni;;p

�
2: Observation process that describes the abundance at site i
where yij is the number of plastic items observed at site i during
count jwith detection probability p given the true number of plastic
items present Ni at site i. The abundance component is modelled as
a random Poisson process and estimates the number of plastic
particles present (K�ery et al., 2005; K�ery and Schaub, 2012; Royle
and Nichols, 2003). The observation model component is condi-
tional on the number of plastic particles estimated in each sampling
quadrat, and estimates the probability of detection based on
repeated counts at a given site using binomial trials for each plastic
item. Two critical assumptions for these models are that the pop-
ulation is closed over the period during which the repeat surveys
are conducted, and that no false positive detections occur. Because
we conducted all repeat counts of our sampling quadrats on the
same day within a 90 min interval, no plastic particles were added
or lost by tidal action between counts by different observers and
the closure assumption was fully met. We tested the assumption of
no false positive observations by comparing observations to sieved
abundances prior to fitting models.

We fit binomial mixture models in R 3.1.3 (R Development Core
Team, 2014) using the function ‘pcount’ in R package ‘unmarked’
(Fiske and Chandler, 2011) with ‘sampling quadrat’ as categorical
site covariate affecting abundance. We then extracted the mean
estimated abundance for each sampling quadrat from estimated
coefficients and compared the mean and 95% confidence interval of
the estimated abundance to the true abundance of plastic deter-
mined by sediment extraction to quantify the degree of bias of the
models.

To examine which factors affected the probability to detect
different types of plastic, we used an information theoretic
approach and constructed 12 plausible candidate models explain-
ing the variation in plastic count data. We first constructed a null
model that assumed that detectionwas constant across space, time,
and different observers.We then constructed amodel that assumed
that detection of plastic was affected by the beach substrate,
namely the percent cover of coral rubble and biological debris. The
remaining ten models all considered that detection probability
varied either among the five observers or whether observers had
previous experience in collecting plastic debris from beaches. Eight
of these 10 models additionally accounted for variability in detec-
tion with the percent cover of coral rubble, the cover of biological
debris, the percent cloud cover, and the temporal sequence of
counts as a measure of observer fatigue (i.e., reduced vigilance) or
increasing experience. We ranked all 12 models using Akaike’s In-
formation Criterion (AIC; Burnham and Anderson, 2002), and
provide mean parameter estimates with standard errors for those
detection parameters that received the greatest support from our
data. All data and the R code used to obtain the results have been
deposited at https://github.com/steffenoppel/plastic.
3. Results

Across the 33 quadrats, observers counted between 0 and 5 blue
fragments, 0e7 black fragments, 0e23 white fragments, 0e4 black
pellets, and 0e7 white pellets per quadrat. True abundance of
plastic particles obtained from sediment extraction resulted in 0e6
blue fragments, 0e3 black fragments, 0e34 white fragments, 0e4
black pellets, and 0e9 white pellets per quadrat. Summed across all
plastic particles, each observer recorded only 67.3e81.3% of the
plastic particles that were actually retrieved from the sampling
quadrats, and raw detection probabilities ranged from 60 to 100%
across each observer and types of plastic (Table 1).

Black fragments were the only type of plastic easily confused
with other particles on the beach, which led to highly variable
detection and a high incidence of false positive detections. Of the 33
sampling quadrats, only 8 contained any black plastic fragments,
but observers recorded black fragments in 30 quadrats. Each
observer recorded non-existing black fragments in at least four
quadrats, and overall 48 counts (29%) of black fragments contained
false positive observations. We therefore did not estimate abun-
dance of black fragments with binomial mixture models because a
key assumption was violated. For white fragments, white pellets,
and black pellets, <10% of observations contained false positives,
for blue fragments 17% of observations contained false positive
detections.

Despite the mild violation of a core assumption, binomial
mixture models generally retrieved an accurate estimate of the true
abundance of plastic from the repeated count data (Fig. 2). True
abundance values were within the 95% confidence interval of the
estimated abundance for 94% of quadrats for blue fragments, 91%
for black and white pellets, and 82% for white fragments. The
models indicated that the detection probability of plastic was
highly variable among the different types and colours (Table 1).
Blue plastic fragments were detected most accurately by all ob-
servers (Fig. 2), with estimated detection probabilities approaching
1 even for inexperienced observers (Table 1). Estimated detection
probability of white fragments was below 50% even for experienced
observers (Table 1). Detection of the small pellets was extremely
variable among observers, but overall the probability to detect
white or black pellets was slightly higher than the detection
probability for white fragments (Table 1).

The factors affecting detection probability varied across the four
different types of plastic we modelled. Blue fragments were easily
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Table 1
True (sieved) and estimated detection probabilities (mean, and 95% confidence intervals) for five different types of plastic counted by five different observers with or without
previous plastic detection experience in 33 50� 50 cm quadrats on a pale sandy beach on Henderson Island, South Pacific in July 2015. Raw probabilities were based on sieved
abundances, estimates were based on binomial mixture models.

Type Colour Observer Previous experience True detection probability Estimated detection probability

Mean Lower 95% CI Upper 95% CI

Fragment Black A No 0.833 Model assumptions violated
B Yes 1.000
C Yes 0.974
D No 0.897
E No 0.974

Blue A No 0.947 0.902 0.764 0.946
B Yes 0.947 0.904 0.759 0.953
C Yes 0.965 0.901 0.755 0.951
D No 0.902 0.865 0.704 0.926
E No 0.934 0.857 0.695 0.920

White A No 0.663 0.178 0.105 0.288
B Yes 0.797 0.226 0.136 0.353
C Yes 0.777 0.226 0.136 0.353
D No 0.639 0.179 0.106 0.289
E No 0.685 0.179 0.106 0.290

Pellets Black A No 0.980 0.826 0.525 0.932
B Yes 0.859 0.763 0.435 0.895
C Yes 0.952 0.826 0.522 0.933
D No 1.000 0.805 0.494 0.919
E No 0.795 0.543 0.200 0.746

White A No 0.626 0.445 0.325 0.572
B Yes 0.759 0.556 0.423 0.681
C Yes 0.872 0.648 0.485 0.782
D No 0.847 0.725 0.568 0.840
E No 0.602 0.271 0.176 0.389
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Fig. 2. Total number (±95% confidence intervals) of plastic fragments and pellets in 33
different 50 � 50 cm quadrats estimated with a binomial mixture model from repeated
count data provided by five observers. Red crosses indicate true abundance deter-
mined by collecting all plastic items within each quadrat (see Methods). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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detected by all observers, and there was model selection uncer-
tainty (Table 2) with ambiguous support for either detection to vary
by observer (Table 1), or increase with experience
(b¼ 0.353 ± 0.379, z¼ 0.93, p¼ 0.35), or decrease with the amount
of biological debris (b ¼ �0.740 ± 0.332, z ¼ �2.23, p ¼ 0.03). By
contrast, white fragments were difficult to detect given the pale
sandy background and the presence of natural rubble, and the best
supported model indicated that detection probability increased
with experience (b ¼ 0.304 ± 0.094, z ¼ 3.25, p < 0.001) and
decreased with increasing cover of white coral rubble
(b ¼ �0.295 ± 0.071, z ¼ �4.18, p < 0.001). For the much smaller
pellets, observer experience received little support from the data,
and detection probability was better explained by differences
amongst individual observers independent of their previous
experience (Table 2). For white pellets, there was overwhelming
support for observer differences and decreasing detection proba-
bility over time as observers showed signs of decreasing vigilance
(b ¼ �0.396 ± 0.118, z ¼ �3.36, p < 0.001). Detection probability of
black pellets also varied by observer and appeared to increase with
more biological debris (b ¼ 0.543 ± 0.344, z ¼ 1.58, p ¼ 0.11;
Table 2).
4. Discussion

Counts of plastic on beaches are useful for monitoring the
quantity of plastic in the marine environment, but spatial and
temporal comparisons assume that the proportion of plastic
counted by observers is constant across space and time. We iden-
tified and quantified three common sources of error that may lead
to highly variable counts of plastic on beaches, namely imperfect
detection, misidentification, and misclassification. We have shown
that even experienced observers generally detect less than 100% of
all plastic particles, and that detection probability is extremely
variable among types and colours of plastic, and among different
observers. These sources of variation may confound any spatial or
temporal comparison of plastic counted on beaches, and may lead
to biased or erroneous conclusions about the accumulation of
plastic in the marine environment.

Imperfect detection of plastic debris can potentially be
accounted for using repeat surveys and binomial mixturemodels to
estimate the true abundance of plastic. Such data could be easily
generated by at least 3e10 independent repeat counts from at least
25e50 distinct sites. While these approaches require a more
stringent monitoring design and greater monitoring effort, the
statistical framework is applied increasingly to large-scale citizen
science datasets (Isaac et al., 2014; Tulloch et al., 2013; van Strien
et al., 2013) and we envision that results from beach surveys
could be analysed in a similar fashion to account for the imperfect



Table 2
Model selection table examining effects influencing the detection probability for five
different types of plastic counted by five different observers on a pale sandy beach
on Henderson Island, South Pacific in July 2015. Factors included observer experi-
ence, proportion of substrate covered by pale-coloured coral rubble or dark-
coloured biological debris, visibility (sun or shade), and observer fatigue (see
Methods for details). k: the number of parameters, AIC: Akaike’s Information Cri-
terion, DAIC: difference in AIC values from the best-fitting model (lowest AIC value),
uAIC: Aikaike weight.

Type Colour Model k AIC DAIC uAIC

Fragment White Experience þ coral rubble 36 723.93 0.00 0.89
Observer þ coral rubble 39 729.05 5.12 0.07
Experience þ fatigue 36 732.01 8.08 0.02
Experience 35 732.74 8.81 0.01
Experience þ biol.debris 36 734.55 10.63 0.00
Experience þ visibility 36 734.67 10.74 0.00
Biol.debris þ coral rubble 36 734.95 11.02 0.00
Observer þ fatigue 39 736.60 12.67 0.00
Observer 38 737.87 13.94 0.00
Observer þ biol.debris 39 739.68 15.76 0.00
Observer þ visibility 39 739.78 15.85 0.00
null 34 741.67 17.74 0.00

Blue Experience þ biol.debris 36 283.61 0.00 0.36
Observer þ biol.debris 39 283.82 0.21 0.32
Biol.debris þ coral rubble 36 284.43 0.82 0.24
Experience þ visibility 36 289.43 5.82 0.02
Observer þ visibility 39 290.10 6.49 0.01
Null 34 290.24 6.63 0.01
Experience 35 291.32 7.71 0.01
Observer 38 291.54 7.93 0.01
Experience þ fatigue 36 291.69 8.09 0.01
Observer þ fatigue 39 292.16 8.55 0.00
Experience þ coral rubble 36 293.28 9.68 0.00
Observer þ coral rubble 39 293.50 9.89 0.00

Pellets White Observer þ fatigue 39 407.39 0.00 0.98
Observer þ biol.debris 39 417.10 9.70 0.01
Observer 38 417.72 10.33 0.01
Observer þ coral rubble 39 419.34 11.95 0.00
Observer þ visibility 39 419.57 12.18 0.00
Experience þ fatigue 36 435.95 28.55 0.00
Experience 35 439.55 32.16 0.00
Experience þ biol.debris 36 439.71 32.32 0.00
Experience þ visibility 36 440.90 33.50 0.00
Experience þ coral rubble 36 441.07 33.68 0.00
Null 34 443.18 35.79 0.00
Biol.debris þ coral rubble 36 444.66 37.27 0.00

Black Observer þ biol.debris 39 245.59 0.00 0.35
Observer 38 246.12 0.53 0.27
Observer þ fatigue 39 247.70 2.11 0.12
Observer þ visibility 39 247.90 2.30 0.11
Observer þ coral rubble 39 248.07 2.48 0.10
Null 34 252.30 6.71 0.01
Experience þ biol.debris 36 252.57 6.98 0.01
Experience 35 252.95 7.36 0.01
Biol.debris þ coral rubble 36 253.69 8.10 0.01
Experience þ visibility 36 254.85 9.26 0.00
Experience þ coral rubble 36 254.91 9.32 0.00
Experience þ fatigue 36 254.95 9.36 0.00
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detection of plastic. Alternatively, more efficient monitoring de-
signs that use the time to detection to estimate detection proba-
bility have proven useful in botanical surveys and may reduce the
number of observers required for robust monitoring (Bornand et al.,
2014). However, an important consideration for the design of such
surveys is the interval between repeat surveys and between sur-
veys that are used to estimate changes over time: the abundance of
plastic on a beach is a function of accumulation over time, hence
the interval between sampling events will influence the abundance
of plastic that is collected (Moreira et al., 2016; Ryan et al., 2014;
Smith and Markic, 2013).

Existing beach surveys and clean-up programmes that do not
account for imperfect detection underestimate the amount of
plastic on beaches. For these existing datasets, or for monitoring
programmes where designs or analyses accounting for imperfect
detection are logistically impractical, the true amount of plastic
could be coarsely extrapolated by using the detection probabilities
estimated here. Based on detection probabilities calculated from
sediment extraction and estimated from models, we suggest that
the true amount of white fragments can be 1.3e9.5 � higher than
raw counts, 1.0e1.4 � higher for blue fragments, 1.2e5.7 � higher
for white pellets, and 1.0e4.9 � higher for black pellets. These
correction factors apply however only for plastic visible on the
surface, and do not account for the invisible plastic buried in the
sediment (Kusui and Noda, 2003; Williams and Tudor, 2001). In
addition, these factors are likely to vary among different beaches,
and we strongly recommend that long-term monitoring pro-
grammes assess the amount of plastic missed by observers and
develop correction factors for the local conditions on each target
beach if no robust monitoring approaches are feasible. Despite their
limitations, correction factors have proven beneficial in ecological
studies (Eagles-Smith et al., 2008; Johnson, 2008).

The most important variable that affected detection probability
of plastic debris across the different types of plastic that we
investigatedwas the identity of the observer. For some items, in our
case white fragments, observer experience could adequately con-
trol for variation among observers, whereas for smaller pellets and
black fragments experience alone was a poor predictor of observer
performance. In addition to the observer effect, fatigue played an
important role in the detection of white pellets, where detection
probability decreased towards the end of the trial. Observer effects
and experience are well known to influence surveys of animal
(Alldredge et al., 2007; Diefenbach et al., 2003; Gale et al., 2009)
and plant populations (Ahrends et al., 2011; Burg et al., 2015;
Dufrêne et al., 2015), and we recommend that observer heteroge-
neity is considered routinely in the analysis of beach plastic
monitoring studies.

Besides imperfect detection, the second major source of error
was misidentification. Some observers in our experiment counted
more plastic fragments than were actually present in a given
quadrat, and this pattern was most prominent for black fragments,
and to a much lesser extent for black pellets. False positive de-
tections likely occurred due to confusing natural debris, for
example clam shell fragments, charcoal, leaves, or coral items with
similar white or black plastic fragments or pellets. While the non-
detection of plastic particles that are actually present can be
accounted for using the binomial mixture models that we have
employed, most current abundance estimation methods assume
that no false positive detections occur in the data (D�enes et al.,
2015). Although there are some approaches that correct for false
positive detections in applications dealing with binary detection/
non-detection data (McClintock et al., 2010; Miller et al., 2013;
Royle and Link, 2006), we are not aware of techniques that con-
trol for false positive detections in abundance estimates (D�enes
et al., 2015). False positive detections will lead to an over-
estimation of the actual abundance of plastic, and a concomitant
underestimation of the detection probabilities (Table 1). Although
both our abundance and detection probability estimates were
slightly affected by the occurrence of false positive detections, we
believe that this problemmay be less severe in actual beach surveys
than in our experiment: to maintain equal detection opportunities
in our experiment the observers were not allowed to touch any
fragments, as this could have altered the detection probability for
subsequent observers. Biological compounds and plastic fragments
are generally easy to distinguish by their texture and weight, and
practical beach survey applications may therefore suffer from far
less false positive detections than our artificial experiment. Where
possible, polymer identification techniques, such as Fourier trans-
form infrared spectroscopy (FTIR) should be adopted (Mecozzi
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et al., 2016).
One approach to overcome difficulties with observer heteroge-

neity and imperfect detection in long-term monitoring pro-
grammes of plastic pollution could be to choose to monitor plastic
items with very high detection probability which may offer the
most reliable data without the need to control for observer differ-
ences and imperfect detection. In our experiment only blue frag-
ments were detected reliably and almost perfectly by all observers,
most likely because blue fragments contrasted strongly with the
beach sediment colour and all natural compounds encountered on
the beach (Fig. 1). Easily detectable blue fragments could therefore
serve as an indicator that is less affected by imperfect detection.
The adoption of a single candidate indicator would however require
further studies that estimate the correlations between the abun-
dance of blue plastic fragments and other plastic items (Ribic,
1998).

While focussing on one particular type and colour of plastic may
help control for detection probability, such an approach will
introduce the risk of misclassification. In our experiment blue
fragments had the second-highest proportion of false positive de-
tections despite the generally very accurate counts. Observers likely
detected and correctly identified plastic pieces that had different
hues of blue and erroneously classified them as blue (e.g. bluish
green, purple). Therefore, deciding on the type and colour of plastic
that will enable unambiguous classification and spatiotemporal
comparisons without the need to control for variable and imperfect
detection is likely very challenging: dark volcanic sediments,
coarser biological debris of various colours, and other natural
debris will likely lead to locally diverse conditions that affect the
detection probability of different types of plastic in different ways.

5. Conclusions

In summary, we recommend that the highly variable and
inconsistent detection probability of different plastic types and
colours is considered for any spatial or temporal comparisons of
plastic surveys along beaches. Estimates of the total amount of
plastic on beaches need to be corrected for imperfect detection, and
we provided a range of possible correction factors for various types
of plastic. Future monitoring programmes should consider appro-
priate survey designs with multiple observers or recording the
time-to-detection to control for imperfect and variable detection.
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